FDM vs Resin 3D Printing

Guides
FDM vs Resin 3D Printing
Which Is Right for Your Project?
When choosing a 3D printing method for your next project, the two most common technologies you’ll encounter are FDM (Fused Deposition Modeling) and Resin Printing. Both offer unique advantages, and selecting the right one can make all the difference in quality, cost, and turnaround time.
What Is FDM 3D Printing?
FDM printing uses melted thermoplastic filament (like PLA, PETG, or ABS), which is layered onto a build plate to form your object. It’s widely used due to its affordability and ability to create strong, functional parts.
- Best for: Prototypes, mechanical parts, enclosures
- Material choices: PLA, PETG, ABS, TPU
- Pros: Cost-effective, durable, large part sizes
- Cons: Less detailed finish, visible layer lines
What Is Resin 3D Printing?
Resin printing (SLA or MSLA) cures liquid resin with UV light to create highly detailed prints. It’s ideal for small, intricate models like miniatures or dental molds.
- Best for: Miniatures, models, dental parts, jewellery
- Material choices: Standard resin, flexible resin, high-temp resin
- Pros: High detail, smooth surfaces, precision
- Cons: Brittle, messy post-processing, more expensive
FDM vs Resin: A Side-by-Side Comparison
Feature | FDM | Resin |
---|---|---|
Detail Level | Moderate | High |
Durability | Strong | Brittle |
Cost | Lower | Higher |
Post-Processing | Simple | Messy / Needs curing |
Size Limits | Large builds | Small precision |
Which One Should You Choose?
If you need a durable prototype or mechanical part, FDM is likely your best bet. But if your design demands intricate detail or surface smoothness, resin printing is the way to go.
At BritForge 3D, we offer only FDM printing so to ensure you get the right solution for your needs please feelfree to Contact us and we’ll help you choose the correct method based on your design and purpose.
Get Started Today
Upload your 3D model and get an instant quote fast, professional 3D printing from a trusted UK supplier. Click here to upload your file.

Guides
Prepare Your STL File for 3D Printing
Before uploading your design for 3D printing, it’s crucial to ensure your STL file is clean, watertight, and printable. Here’s a simple step-by-step guide to help you prepare your file for the best results.
1. Export Your Model to STL Format
Most CAD software can export to STL. Ensure you choose the right resolution — too low and your model looks blocky; too high and the file may be too large.
2. Check for Common Errors
- Non-manifold edges
- Holes or flipped normals
- Unwanted internal faces
3. Repair Your File
Use tools like Netfabb, Meshmixer, or Microsoft 3D Builder to automatically fix file errors before submitting.
4. Scale and Orient
Make sure the size matches your desired output and the orientation is optimal for your print goal.
5. Upload with Confidence
Once your file is ready, head to BritForge3D.co.uk and upload your STL to get an instant quote and professional results.

Guides
Choose the Right Material for Your 3D Print
One of the most important decisions you’ll make when starting a 3D printing project is choosing the right material. Whether you’re printing a prototype, a mechanical part, or a piece of art, the filament or resin you choose can affect the strength, appearance, and success of your final product.
Why Material Choice Matters in 3D Printing
Every material used in 3D printing has its own set of properties from strength and flexibility to heat resistance and surface finish. Choosing the wrong material can lead to failed prints, brittle parts, or unnecessary expense. Understanding the differences between materials helps ensure you get the best results based on your application.
Overview of Common 3D Printing Materials
- PLA (Polylactic Acid): Easy to print and biodegradable. Ideal for general-purpose prints and prototypes.
- PETG (Polyethylene Terephthalate Glycol): Stronger and more durable than PLA. Great for functional parts.
- ABS (Acrylonitrile Butadiene Styrene): Impact-resistant and heat-tolerant. Used in engineering and manufacturing.
- TPU (Thermoplastic Polyurethane): Flexible and rubber-like. Suitable for phone cases, seals, and wearables.
When to Choose PLA
PLA is perfect for beginners or those creating visual models. It’s affordable, available in a wide range of colours, and prints without warping. However, it’s not the best choice for parts exposed to high heat or mechanical stress.
When to Choose PETG
PETG is ideal for durable parts that need to resist stress or moisture. It offers a good balance between strength and flexibility and is commonly used in mechanical assemblies, tool handles, and enclosures. PETG also has a glossy finish and better UV resistance than PLA.
When to Choose ABS
ABS is known for its high durability and heat resistance. It’s used in automotive components, functional prototypes, and casings. However, it requires a heated print bed and enclosed chamber to prevent warping, and it emits fumes, so good ventilation is essential.
When to Choose TPU or Specialty Filaments
TPU is a flexible filament often used for protective gear, phone cases, and gaskets. Specialty filaments such as carbon fibre, wood-infused, or glow-in-the-dark PLA offer additional features but may require tuning print settings or a hardened nozzle.
Material Comparison Table
Material | Strength | Flexibility | Print Difficulty | Use Case |
---|---|---|---|---|
PLA | Moderate | Low | Easy | Prototypes, models |
PETG | High | Moderate | Medium | Functional parts |
ABS | High | Low | Difficult | Engineering, industrial |
TPU | Moderate | High | Medium | Flexible parts |
Tips for Choosing the Right Material
- Match material strength and durability to the intended use
- Consider the environment heat, moisture, UV exposure
- Think about flexibility or rigidity as needed
- Balance aesthetics vs. functionality
- Ask for advice if unsure experienced printers can help
How BritForge 3D Can Help
At BritForge 3D, we work with a wide range of materials to suit every project. Whether you’re printing a quick prototype or a batch of custom parts, we help you select the right filament based on your goals, budget, and design needs.
Our experts are happy to recommend the best option for your file. Simply upload your model or contact us for a free consultation.
Conclusion
Choosing the right material is critical to the success of your 3D print. With options like PLA, PETG, ABS, and TPU, there’s a perfect filament for every job and BritForge 3D is here to help you find it. Let us bring your ideas to life with the right balance of strength, detail, and value.

Guides
3D Printing for Education
How Schools and Colleges Can Benefit
3D printing is transforming education across the UK. From primary classrooms to university engineering labs, this technology allows students to bring their ideas to life developing critical thinking, creativity, and real-world problem-solving skills.
At BritForge 3D, we’re proud to support schools, colleges, and educators with high-quality, affordable printing services that bring learning to life.
Why 3D Printing Belongs in the Classroom
3D printing introduces students to the world of design, engineering, and technology in a hands-on, engaging way. Instead of just learning theory, students can prototype, test, and iterate just like professional engineers and designers do.
Educational Benefits of 3D Printing
- Hands-on STEM Learning: Print real-world models to support science, maths, engineering and technology education.
- Encourages Creativity: Students can design and build original projects that they can physically hold and evaluate.
- Bridges Digital and Physical: Teach CAD, design thinking, and prototyping skills with instant physical results.
- Boosts Engagement: Interactive learning that appeals to visual and kinesthetic learners.
Popular 3D Printing Projects for Schools
- Working mechanical gear systems
- Topographic maps and historical models
- Biology models: cells, bones, organs
- Custom tools or classroom organisers
- STEM club competitions and creative design challenges
Supporting the UK Curriculum
3D printing aligns well with the UK’s national curriculum, especially in Design and Technology, Science, and Computing. Students gain digital literacy and problem-solving skills that prepare them for careers in engineering, architecture, product design, and more.
Why Schools Choose BritForge 3D
- Cost-effective printing with bulk education discounts
- Print-ready help and model checking
- Support for both PLA and resin models
- Custom packaging and quick UK delivery
No Printer? No Problem!
You don’t need an expensive school 3D printer. With BritForge 3D, teachers can upload STL files and have models delivered to the school within days ideal for small or large classroom projects.
How to Get Started
If you’re an educator or school leader interested in adding 3D printing to your teaching toolkit, get in touch with us. We’ll help you choose materials, set expectations, and ensure your project fits your classroom goals and budget.
Conclusion
3D printing in education opens the door to interactive, future-ready learning. With expert support and reliable service from BritForge 3D, you can inspire students, reinforce key concepts, and make lessons more engaging one layer at a time.

Guides
Understanding Print Orientation and Part Strength
Print orientation is one of the most important yet often overlooked aspects of successful 3D printing. How a part is positioned on the print bed affects not only how it looks but also how strong it is in real-world use. At BritForge 3D, we evaluate each model to ensure it’s oriented for the best balance of strength, accuracy, and surface finish.
What Is Print Orientation?
Print orientation refers to how your 3D model is positioned during the printing process. This determines how layers are built up, how supports are generated, and how forces act on the finished part.
Why Print Orientation Matters
- Part Strength: FDM prints are weakest between layers. Orient your part to resist stress across layers.
- Surface Finish: Vertical surfaces print smoother than horizontal overhangs.
- Print Time & Supports: Orientation affects how much support material is required and how long a print takes.
- Accuracy: Flat surfaces on the print bed come out cleaner and more dimensionally accurate.
Layer Adhesion and Strength
In FDM 3D printing, parts are built layer by layer. The bond between layers isn’t as strong as the material itself, which means parts can be prone to delamination under stress especially if printed in the wrong orientation. For maximum strength, orient parts so the load is parallel to the layers.
Examples of Optimal Orientation
- Brackets: Print with the flat face on the bed and the arms upright to handle load across the layer lines.
- Hinges or Clips: Align so stress points run along, not between, layers.
- Decorative Models: Choose orientation for better detail visibility and smooth surfaces.
Support Material Considerations
Changing orientation can dramatically reduce the need for supports saving time and material. Parts printed with minimal overhangs are easier to post-process and have a better finish.
Tips for Better Print Orientation
- Minimise large overhangs (greater than 45°)
- Orient parts with the flattest side down for bed adhesion
- Consider the functional load design for it!
- Use preview features in slicing software to evaluate orientation
How BritForge 3D Helps
When you upload a file to BritForge 3D, we assess print orientation to ensure it meets your needs. Whether you’re making a working part or a display model, we tweak orientation, supports, and slicing settings to optimise every job.
Conclusion
Understanding how orientation affects 3D printed part strength can be the difference between success and failure. Our team at BritForge 3D takes the guesswork out delivering durable, high-quality prints designed for real-world performance.

Guides
How Long Does 3D Printing Take?
A Practical Guide
One of the most common questions we get at BritForge 3D is: “How long will my 3D print take?”
The answer depends on several factors, from the size and complexity of the model to the chosen material and print resolution. In this guide, we’ll break it down so you know what to expect whether you’re printing a simple keychain or a fully functional prototype.
What Affects 3D Print Time?
- Model Size: Larger models take longer due to more layers and longer tool paths.
- Print Layer Height: Thinner layers = better quality but slower prints.
- Infill Percentage: More internal material means longer print times.
- Number of Parts: Printing multiple objects increases time, especially if done all at once.
- Printer Type: FDM printers are generally slower than resin (SLA/DLP) printers for small, detailed parts.
Typical Print Times
Item Type | Estimated Time | Notes |
---|---|---|
Keychain or Small Figurine | 30 mins – 2 hours | Low infill, basic shape |
Phone Stand or Medium Bracket | 2 – 6 hours | Functional item with moderate infill |
Large Prototype or Cosplay Part | 8 – 24+ hours | Higher resolution and material use |
FDM vs. Resin Print Speeds
FDM Printing: Generally slower but more economical for larger prints.
Resin Printing: Faster for small detailed items, but requires more post-processing (washing and curing).
Other Time Factors
- Pre-Print Setup: File prep, orientation, slicing and machine calibration.
- Post-Processing: Removing supports, sanding, curing (for resin).
- Queue Time: If demand is high, your print may be scheduled in a queue especially for bulk or business orders.
Speed vs. Quality
If you choose faster printing (thicker layers), you may sacrifice surface detail and finish. For display models, thinner layers look better. For functional items, speed and strength may be more important. At BritForge 3D, we help you balance quality and turnaround time to match your needs and budget.
How BritForge 3D Delivers Efficient Prints
We use high-speed, industrial-grade printers and fine-tuned slicing profiles to reduce print times without compromising quality. You’ll get a time estimate when you upload your file, and we’ll keep you informed every step of the way.
Conclusion
3D printing times vary, but with the right setup and planning, your prints can be completed faster than you might expect. Whether you need something in 24 hours or just want to understand the process, BritForge 3D is here to deliver precision prints on time, every time.

Introduction to 3D Printing
How to Choose the Right Material for Your 3D Print
When it comes to 3D printing, selecting the right material can make the difference between a strong, high-quality print and a failed project. With so many options available from PLA and PETG to ABS and resin, it’s essential to understand the unique properties of each material before starting your print. In this guide, BritForge3D breaks down the most common materials and helps you decide which one is right for your project.
Why Material Choice Matters
The material you choose impacts strength, flexibility, appearance, and even the cost of your final print. For functional prototypes, you might need something durable and heat-resistant. For decorative models, you’ll likely want a smooth finish and a wide range of colours. Making the right choice upfront saves time, money, and frustration.
PLA (Polylactic Acid)
PLA is the most commonly used 3D printing filament and is perfect for beginners. It’s easy to print, affordable, and widely available in multiple colours. However, PLA isn’t very heat-resistant and can deform under stress.
- Best for: Decorative prints, prototypes, hobby projects
- Pros: Easy to print, low cost, biodegradable
- Cons: Lower strength, low heat resistance
PETG (Polyethylene Terephthalate Glycol)
PETG combines the best of both worlds, it’s stronger and more durable than PLA, yet easier to work with than ABS. It’s ideal for prints that need toughness without compromising detail.
- Best for: Functional parts, mechanical components
- Pros: Strong, impact-resistant, water-resistant
- Cons: Slightly trickier to print than PLA, prone to stringing
ABS (Acrylonitrile Butadiene Styrene)
ABS is a professional-grade material known for its strength and temperature resistance. However, it requires higher print temperatures and often a heated enclosure.
- Best for: High-strength parts, automotive components
- Pros: Durable, heat-resistant, widely used in industry
- Cons: Requires controlled environment, emits fumes when printing
Resins
Resin printing offers unmatched detail and surface finish. It’s used for miniatures, jewellery, prototypes, and dental models. However, resin handling requires safety precautions and proper curing.
- Best for: High-detail models, jewellery, miniatures
- Pros: Exceptional detail, smooth finish
- Cons: Messy handling, requires post-curing, higher cost
How to Pick the Right Material for Your Project
Ask yourself these questions:
- Do you need strength or flexibility?
- Will the part be used indoors or outdoors?
- Do you need a smooth, polished finish?
- Is cost or durability more important?
By answering these, you can narrow your material options quickly.
Still Not Sure? Let BritForge3D Help!
If you’re unsure which material is right for your print, BritForge3D can guide you. Simply upload your 3D file, and our team will review your project and recommend the best material for quality, durability, and cost-effectiveness.
Conclusion
Choosing the right 3D printing material is critical to achieving the results you want. Whether you’re experimenting with PLA, working with durable PETG, or exploring the precision of resin, understanding each option gives you the confidence to design and print like a pro. BritForge3D is here to support your journey, one layer at a time.